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UNITS OF MEASURE 

In a prepared statement presented on August 5, 1965, to the 
U. S. House of Representatives Science and Astronautics Committee 
(chaired by George P. Miller of California), the position of the 
National Aeronautics and Space Administrationon Uni t s  of Measure 
was  stated by Dr. Alfred J. Eggers, Deputy AssociateAdministrator, 
Office of Advanced Research and Technology: 

"In January of this year NASA directed that the international 
systemof units should be considered the preferred system of units, 
and should be employed by the research centers as the primary 
system in all reports and publications of a technical nature, except 
where such use would reduce the usefulness of the report to the 
primary recipients. During the conversion period the use of cus- 
tomary units in parentheses following the SI units is permissible, 
but the parenthetical usageof conventional units will be discontinued 
as soon as it is judged that the normal users of the reports would 
not be particularly inconvenienced by the exclusive use of SI units. If 

The International System of Units (SI Units) has been adopted 
by the U. S. National Bureau of Standards (see NBS Technical News 
Bulletin, Vol. 48, No. 4, Apri l  1964). 

The International System of Units is defined in NASA SP-7012, 
!?The International System of Units, Physical Constants, and 
Conversion Factors," which is available from the U. S. Government 
Printing Office, Washington, D. C. 20402. 

SI Units are used preferentially in this series of research re- 
ports in accordance with NASA policy and following the practice of 
the National Bureau of Standards. 
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PREFACE 

In 1955, the team which has become the Marshall 
Space Flight Center (MSFC) began to organize a re- 
search program within its various laboratories and 
offices. The purpose of the program was two-fold: 
f irst ,  to support existing development projects by re- 
search studies and second, to prepare future develop- 
ment projects by advancing the state of the art of 
rockets and space flight. Funding for this program 
came from the Army, Ai r  Force, and Advanced Re- 
search Projects Agency. The effort during the first 
year  was modest and involved relatively few tasks. 
The communication of results was, therefore, com- 
paratively easy. 

Today, more than ten years later,  the two-fold 
purpose of MSFC's research program remains un- 
changed, although funding now comes from NASA Pro- 
gram Oflices. The present yearly effort represents 
major amounts of money and hundreds of tasks. The 
greaterportion of the money goes to industry and uni- 
versit ies for  research contracts. However, a sub- 
stantial research effort is conducted in house at the 
Marshall Center by all of the laboratories. The com- 
munication of the results from this impressive re- 
search program has become a serious problem by 
virtue of its very voluminous technical and scientific 
content. 

The Research Projects Laboratory, which is the 
group responsible for management of the consolidated 
research program for the Center, initiated a plan to 
give better visibility to the achievements of research 
at Marshall in a form that would be more readily us- 
able by specialists, by systems engineers, and by 
NASA Program Offices f o r  management purposes. 

This plan has taken the form of frequent Research 
Achievements Reviews, with each review covering one 
or  two fields of research. These verbal reviews are 
documented in the Research Achievements Review 
Series. 

Ernst  Stuhlinger 
Director, Research Projects Laboratory 

T h e s e  papers presented January 6 ,  1966 

... 
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BY 

C. L. Bradshaw'& 

SUMMARY 

The problems associated with e%ectively relating 
machine languages and problem oriented language for 
efficient use of computers is discussed. The need 
fo r  improvements in the man-machine relationship 
and economic improvements of trade-offs that can be 
achieved between presently developed machine lan- 
guages to broaden the participation and usefulness of 
the computer in space programs is emphasized. 

The impact of standardization on computer utili- 
zation, the consequent reduction in redundant effort 
and relief from the continual need for the reformula- 
tion of the problem is shown a s  an important objective 
of the Computation Laboratory and some achievements 
in this area a r e  discussed. 

1. INTRODUCTION 

Computers have become an essential tool in the 
research and development programs of our nation. 
They have also become a very expensive and sensi- 
tive i tem in our nation's budget. 
computational mathematics and languages can lead to 
a more effective use of this most important tool. 
This research  effort can attack the overall problems 
on five main fronts: 

Research into 

1. Improving the mathematics involved in obtain- 
ing a computer solution to an engineering o r  scientific 
problem, 

2. Improving the computer programming lan- 
guages used in problem solution, 

3. Obtaining a more effective use of computing 
hardware and software a s  relates to specific c lasses  
of problems, 

4. Development of more efficient computer 
hardware , and 

5. Improving the man-machine relationship a s  
relates to automatic computing devices. 

MSFC has done o r  sponsored considerable re- 
search  in a reas  which have direct application to the 
a r e a s  mentioned above, This survey wi l l  show the 
MSFC efforts in these areas .  This presentation wil l  
be followed by two papers which wi l l  be more explicit 
in two of these areas .  

1 1 .  COMPUTATIONAL LANGUAGES 

A s  mentioned ear l ie r ,  computers are now being 
used to solve many diverse problems in the fields of 
engineering, science, and business. The fast com- 
puting speed and large internal memory of general 
purpose computers a r e  valuable asse ts  to those who 
prepare the problem solution. However, the language 
of computers i s  a sequence of numbers which usually 
is reduced by the machine to a sequence of ones and 
zeros ,  and this machine language is generally foreign 
to the problem solution prepared by an expert in a 
specialized area. Thus, there is a gap between the 
language of a problem and the language of a machine 
for solving it. 
tensified by the fact that there a r e  almost a s  many 
machine languages a s  there a re  kinds of computers. 
Therefore, work performed in machine language a t  
one site is often of little value elsewhere i f  the 
machines a r e  different. 

The seriousness of this gap is in- 

To reduce this gap, many programs have been 
prepared so that on the one hand they can be under- 
stood by computers and on the other hand they will 
accept a s  input a higher level language which is closer 
to the problem and is called the source language. The 
techniques to implement programs which accept 
source languages fall into two overlapping categories. 
The simplest is to have the computer interpret state- 
ments of the source language and process the intent 
when it is recognized. The more popular technique 
is to translate the source program into an object pro- 
gram which is either in machine language or  closer 

'" Deputy Director, Computation Laboratory 



to machine language. In the la t ter  technique, the 
source program may have several equivalent repre- 
sentations since the object language from one trans- 
lation may be the source language for  another. 

Pragmatically, a language is defined in te rms  of 
what a processor (whether it be called compiler, 
translator, o r  assembler) wi l l  recognize correctly 
for the user. In other words, a computer language 
is directly o r  indirectly the language for  input to a 
computer. Consequently, standardization with a 
group of users  is necessary to determine what is 
mutually agreed to as  being language. 

When the users  of a language a r e  allowed to 
participate in the formulating process, a more mature 
version of the language can be produced more quickly. 
The definition of ATOLL I1 (Automatic Test Oriented 
Launch Language) , which we will now describe, il- 
lustrates how the changing needs of the user can be 
incorporated into the language design during definition 
to avoid producing numerous languages. In such an 
environment, the trade-offs between features desired 
and the implementation cost  can be evaluated realis- 
tically. 

ATOLL I1 i s  a problem-oriented language for  
real-time launch vehicle testing. The language i s  
structured like FORTRAN (Formula Translation) and 
includes, in addition, real-time test-oriented state- 
ments, a more elaborate data description capability, 
a limited ability to manipulate symbolic o r  other non- 
numeric values, and an ability to include inline sym- 
bolic coding. 

The language provides the capability to manipu- 
late both the ground support equipment and the launch 
vehicle. It provides for real-time delays, for  con- 
trol based on maintaining a sequence of events where 
event execution is time related with respect to pre- 
vious functions. 

The language i s  open ended in that the user may 
define what appears to the user to be additional source 
statement types. Thus, the compiler can be adapted 
to the problem area  a s  new specifications a r e  pre-  
pared in the language. 

The language i s  block structured to permit dy- 
namic allocation of variable and temporary storage. 
This feature, in combination with a provision to auto- 
matically segment a test into independent programs, 
assures  that the object space required for test pro- 
grams can be kept very small. 

The language has been designed to satisfy many 
of the requirements and desires  of management, the 

launch system engineer, and the computer program- 
mer.  According to dynamic definition techniques 
which have been developed, this language has evolved 
rapidly over the past year. ATOLL I1 i s  fully docu- 
mented and available for  study. 

We now would like to mention the problem of 
language translation. Since much programming ef- 
for t  has already been expended in languages which 
a r e  now obsolete, o r  f o r  which processors a r e  not 
readily available, there is interest  in the capability 
to translate a program into another language which 
is available. Also, it  i s  desirable to minimize the 
number of different languages a user must learn. 

Many super-processors have been proposed 
which are "machine independent. If  The purpose of 
such a processor i s  to allow preparation of compilers 
for  c lasses  of languages rather than for only a spe- 
cific one. Until recently, insufficient information 
was available to determine w h a t  c lasses  a r e  suffi- 
ciently defined for  implementing in such general 
terms. However, some efforts have been quite suc- 
cessful in the a reas  of assemblers  and context-free 
languages. How to proceed with context-sensitive 
languages i s  not yet c lear ,  although preliminary 
e f for t s  in this direction a r e  being made. 

Some of the most dramatic developments in soft- 
ware have been seen in operating systems, or so- 
called control programs. 
being given the tasks of handling computer interrupts, 
doing bookkeeping on jobs, servicing remote termi- 
nals on a priority basis, scheduling memory and 
computer time, editing and merging of programs, 
and total data management. A s  techniques of mech- 
anizing such tasks a r e  developed, the user is freed 
from meticulous operations and his turn-around time 
i s  shortened so  that his time can be used more pro- 
duc tively. 

Control programs a r e  

One problem area  which has experienced many 
attempts but little success  i s  that of preparing lan- 
guage processors.  Early attempts such as  Jovial 
and Neliac have proved to be educational but econom- 
ically unfavorable. Recent developments in assembly 
level languages have improved expressibility, s t ra t i -  
fied the control of symbol expressions , incorporated 
l i s t  s t ructures ,  and refined recursive macro capa- 
bility with conditional parameter substitution. Yet, 
more work is needed to fill the gap between the kinds 
of languages which a r e  easily implemented and the 
kinds of statements which users  in specialized a reas  
find most appropriate for the problem a t  hand. 

An example of a specialized a rea  which has justi- 
fied the development of a new language is trajectory 
programming, which i s  discussed in the next section. 
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I 1 1 .  THE MSFC TRAJECTORY LANGUAGE 

In the past, MSFC scientific programmers have 
worked individually with the engineer in the develop- 
ment of programs which w e r e  designed, programmed, 
checked out, and documented specifically for that 
engineer's need. This relationship of programmer 
to engineer has proved effective because of the nature 
of past problems and the limited language and sys- 
tems capabilities. Specifically, in the past, many 
programs were large and involved with long produc- 
tion lifetimes, More recently, however, desired 
programs cover a wider range of applications with 
more limited use. This fact makes it imperative 
that our  scientific programmers produce and main- 
tain many more programs. Also, software advances 
have been made which open the door to a more general 
and sophisticated approach to the trajectory applica- 
tions area.  There seems to be no choice but to re-  
evaluate our overall procedures and optimize where 
possible. A s  the result of careful investigation, it 
has been determined that the function of setting up 
and maintaining trajectory programs can and must be 
optimized to a maximum reasonable level. At this 
point, the maximum level of optimization o r  automa- 
tion cannot be ascertained; however, some optimiza- 
tion can be realized. 
real izes  that the entire a rea  of trajectory computa- 
tion, when taken a s  a whole, is a set of associated 
problems with many elements in common. 

This is possible when one 

The form that a problem may acquire in the pro- 
ces s  of being prepared for computation wi l l  vary 
widely within the range of imagination, experience, 
and other resources  possessed by individuals who 
perform this task. For this reason, i t  is frequently 
difficult and time consuming for  one person to use o r  
become familiar with a program that was written by 
someone else. It is also a time consuming task for 
a programmer to modify his  own program. Detailed 
documentation relieves this problem to some extent, 
but the more documentation there is to be studied, 
the more complicated the task becomes. I t  is neces- 
sa ry ,  o r  a t  least desirable, to res t r ic t  the general 
overall s t ructure  of programs to conform as  nearly 
as possible to a general wel l  defined standard model. 
A s  a result of the language and systems improve- 
ments and increased workloads, it was imperative 
that research  be done to establish a fas ter ,  l e s s  ex- 
pensive, and more  useful service by developing a 
trajectory oriented programming system. 

With the increasing demands for fas ter  results 
f rom man and the computer, i t  has become obvious 
that these demands cannot be met with present re- 
sources. With the cost of manhours increasing and 

the cost  oi compuhng machine time decreasiiig, iiiore 
burden must be placed on the computer by the use of 
more problem oriented systems. The trajectory pro- 
grammer must be enabled to do a better job in a 
shorter  time and a t  less cost  to meet these demands. 

We answer  the question, "How can a trajectory 
oriented programming system help eliminate some 
of the effort required by the man in the man-to- 
machine cycle?" a s  follows: 

1. Construct the programs in modular form. 
Programs could consist of elements called modules 
and can be thought of a s  building blocks for many 
programs. This wi l l  eliminate repetitive efforts 
since modules may be interchanged to create  com- 
pletely different programs without major reprogram- 
ming effort. 

2. Standardize nomenclature. To implement the 
modular concept, standardization is necessary. I t  
enables the programmer and the user  to communicate 
in wel l  defined terms,  eliminating confusion in defi- 
nition of coordinate systems, mathematical models 
and units. Documentation of work done will be more 
effective and meaningful. 
programmers will be easier  to interpret and under- 
stand. 

Programs written by other 

3.  Standardize organization of programs. The 
user and programmer can communicate a t  a common 
level. The programmer would be f ree  to do more 
useful and creative work in other areas. New users  
and new programmers can become familiar with pro- 
grams and trajectory concepts ear l ier .  Interchanging 
of programs wil l  be easier. Programs wi l l  be eas ie r  
to modify and maintain simply by changing and modi- 
fying only the necessary modules. Programs wil l  be 
eas ie r  to evaluate since the programming effort wi l l  
be isolated from system functions. Organization of 
the problem wil l  be simplified since much of the 
logic will be handled by the system preprocessor;  

We next look a t  the impact on utilization. 

A problem oriented language and system wi l l  
enable the programmer to drastically cut the time 
required in setting up and maintaining a trajectory 
related program. 
programmer being able to use  precoded subroutines 
and sub-programs a s  the need ar ises .  These pre- 
coded elements w i l l  be fully documented and com- 
pletely checked out beforehand, thus freeing the 
programmer from these routine tasks. 

This savings results from the 

A library will be established for the programmer 
and the user. Therefore, the engineer wi l l  be relieved 
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of the never ending problem of reformulation and re- 
checking of requests and proposals. AS routines are 
developed and pooled by users ,  much redundant effort 
will be eliminated. 

Better documentation of work wil l  be provided by 
a standardization of program logic. 

We now look a t  the difficulties in developing a 
trajectory system of this type. To be widely useful 
and accepted, a trajectory system must satisfy the 
requirements of all the users.  Each user  usually has 
a special interest which emphasizes certain areas 
more than others; for instance, the engineer whose 
primary concern is trajectory optimization puts a 
different emphasis on the guidance package than wi l l  
the engineer whose primary concern i s  simulating 
the on-board guidance computer. In actual practice, 
i t  is difficult to satisfy the needs of the many users 
with one trajectory system. 
sufficient research has been done to demonstrate the 
feasibility of further research of such effort. 

Even though difficult, 

We must recognize the research that must be 
carr ied on in the development of a problem oriented 
system. 

1. Problem a reas  must be analyzed to determine 
the feasibility of developing and implementing a t ra-  
jectory language, in our case, to see if  the trajectory 
area is sufficiently large to justify such an effort. 
We have determined that i t  is large enough. 

2. Work done by other laboratories and inslalla- 
tions must be investigated to determine i f  they a r e  
doing work in this area. If so, w e  must establish 
w.hy the effort, amount of effort, state of development, 
and evaluation of their effort relative to ou r  needs. 

3. Our own needs, present and future, must be 
investigated considering customer contacts, past  
requirements, survey of existing programs, what 
future needs are expected to be. 

4. Methods must be developed for providing the 
following: 

a. Program logic - to allow the programmer 
to direct  the flow of the program in extremely in- 
volved logical paths. 

b. Events - all complex trajectory programs 
involve some type of events o r  interrupts; much plan- 
ning and analysis are required prior to writing a 
program. 
weight drops, high-q and tilt  a r r e s t s .  

Examples of events are engine cutoffs, 

c. Integration - much research needs to be 
done in this area to allow the user to select integra- 
tion schemes to give the desired accuracy fo r  his 
problems, 

d. Input and Output - the present laborious 
effort  of writing long l i s t s  and involved format state- 
ments must be simplified. 

Our future plans a r e  as follows: 

1. Develop and implement an upward compatible 
trajectory oriented programming system. 
also be emphasized that a l l  future programs written 
in the MSFC trajectory system w i l l  be FORTRAN IV 
compatible with other installations. 

I t  must 

2.  Prepare abstracts for all modules both mathe- 
matical and program. 

3. Prepare a users  manual for the system in- 
cluding complete description of statements and their 
source output. 

4. Provide training fo r  the users. 

5. Study feasibility of adapting preprocessor to 
another machine. 
System (VESS) preprocessor has already been trans- 
lated to ALGOL and wi l l  process FORTRAN IV state- 
ments on the Burroughs B-5500 computer. 

The Vectran Engineering Simulation 

The trajectory oriented programming system 
planned by MSFC, Marshall Vectran Engineering 
Simulation System (MARVESS) , contains the only 
preprocessor which actually provides a system func- 
tion that w i l l  recognize a se t  of statements and create  
a trajectory program. 
sludicd can provide these necessary features. 

N o  other system which w e  have 

IV. AMTRAN 

I would like to mention a t  this time one other re- 
sea rch  effort which is underway a t  our Center and has  
as i t s  goal the improvement of the man-machine re- 
lationship. 
name Automatic Mathematical Translator (AMTRAN), 
is directed by Dr. Robert Seitz of the Research 
Projects  Laboratory. AMTRAN is designed to be an 
automatie programming, on-line, mu1 ti - terminal 
computer system which should afford marked improve- 
ments in  programming, debugging and turn-around 
times when i t  is fully developed. 

This effort, which has  been given the 

The system permits  
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a scientist o r  engineer to enter  mathematical equa- 
tions in their natural mathematical format as they 
appear in a textbook and, barring complications, 'to 
obtain an immediate graphical display of the solution 
on an  output display device. The system is intended 
to be used for straightforward problem solution by 
the engineer o r  scientist with little computer experi- 
ence while at the same time providing the flexibility 
required by the experienced programmer to solve 
non-routine problems. A l fsampler l l  version of the 
system is now available using a modified IBM 1620 
computer . 

V. RANDOM PROCESS THEORY 

Thc purpose of research in this area is to ex- 
amine the existing Computation Laboratory techniques 
used to reduce and analyze random process data 
toward the objective of devising new or improved 
applications of statistics and random process theory. 
The specific goals of this research a r e  to reduce the 
data editing and computer usage time, to increase 
the "accuracy" of the statistical estimates of the 
processed data, and to recommend future applica- 
tions of existing data reduction equipment. These 
improvements are to be a result of the investigation 
of the techniques used by the Computation Laboratory 
and the appropriate application of: 

1. Digital filtering techniques 

2. Correlation function analysis 

3. Spectral smoothing techniques 

4. Special functions or processing 

5. Spectrum analysis of nonstationary functions. 

Research contracts were undertaken. to study 
numerical smoothing and differentiation methods. 
With these studies, digital filtering techniques were 
developed and investigated. The main effort w a s  de- 
voted to l inear  digital (numerical) filters for per- 
forming smoothing, differentiation, and integration 
of discrete  data and to do e r r o r  analysis for these 
f i l ters  . 

The mathematical foundations were rigorously 
justified by beginning with classical Fourier theory 
and following through with the development of gen- 
eral ized functions which led to specific functions used 
f o r  filtering. This work i s  well documented in NASA 
Contractor Report  CR-136. These desired digital 
filtering techniques were derived and a re  now being 
a n . C o o c C f u l l l v  qnnl ior l  tc tQst dats  
"U .,uVU-..A-. ----*.,- - - - -  I____ 

The Computation Laboratory also initiated a re- 
search study with the Cornel1 Aeronautical Laboratory 
to do research in a reas  which would satisfy the 
Laboratory requirements of: 

1. Studying and applying the available random 
data processing techniques to the existing MSFC prob- 
lems,  and 

2. Developing new and improved techniques of 
data processing. 

The following discussion indicates that the above 
requirements are being satisfied.': 

A. DIGITAL FILTERING 

Selection of an appropriate sampling interval 
which produces negligible frequency foldiiig is para- 
mount to accurate digital data processing. The vast  
amount of literature available which describes digital 
simulation of transfer functions from the time re- 
sponse point of view can be used to produce pre- 
whitening filters having specific frequency character-  
is tic s. 

Taking the Tustin Transform of an analog notch 
filter w i l l  produce a digital filter which can be used 
for  pre-whitening, with the possibility of total re- 
jection of one frequency. 
relatively few weights. 

These notch f i l ters  contain 

In situations where the power spectral density 
function of only a band of frequencies is of interest, 
digital heterodyning may provide a computational 
time savings in data processing. 

B. CORRELATION FUNCTIONS 

After reading the analysis of different methods of 
estimating correlation functions , one should conclude 
that modifications should be made to any existing 
computational technique that does not consider both 
the accuracy of estimates and the computer time re-  
quired. Many types of correlation function estima- 
tors  a r e  given (autocorrelation being a special case 
of cross-correlation). 
polarityT1 correlator is presented, Computer pro- 
grams are outlined, which will calculate, in minimum 
time , the flhalf-polarityll and llfull-precisionll cor-  
relation functions. It is also suggested that correla- 
tion computational techniques given in the reference 
a r e  applicable. 

Extensive study of the "half- 

* Research Studies of Random Process  Theory and 
Physical Application, NASA CR-61081. 
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C. OPTIMAL SMOOTHING O F  POWER SPECTRAL 
DENSITIES (PSD) 

The appropriate application of proper techniques 
will produce spectral estimates with greater  accuracy 
and also eliminate the need for pre-whitening of the 
signal prior to processing. 

In June, 1965, a 12-month extension to the 
project was initiated, 
and expand the techniques under the initial effort. 
Pr imary  investigations will be the application of the 
non-stationary correlation function theory and digital 
correlation function computation techniques. The 
following l ist  summarizes the technical effort and 
indicates the order  of priority: 

The objectives a r e  to extend 

1. Non-stationary data processing 

2. Stationary data processing 

3. Block diagrams covering application of data 
processing techniques developed. 

The following are  the major accomplishments to 
date: 

1. The discrete data non-stationary correlation 
function theory has been developed. 

2. A solution for the form of the optimum filters 
to be used in the discrete data correlation function 
detector has been obtained. 

V I. D I S CRETE OPT I M 1 ZAT I ON TECHN IQUES 

This laboratory has  a contract with the University 
of Tennessee to do research in Discrete Optimization 
Techniques. The principal investigator is Dr. Gordon 
Sherman of the University's Computing Center and 
Ma thematic s Department. 

The problem is to maximize (minimize) a func- 
tion defined on a given finite set. Typical examples 
are:  the shortest tour problem, the job shop sche- 
duling problem, and the transportation problem. 
Satisfactory solutions a r e  available for some prob- 
lems  of this c lass ,  while complete enumeration of all 
alternatives, i f  it  were possible to do so, is the only 
known way of producing solutions for other cases. 

Dr. Sherman has taken a stochastic approach to 
the problem with the basic idea of combining intelli- 
gent search with random search. He has produced a 

family of algorithms that a r e  quite efficient in the 
shortest tour type problem. These problems were 
used a s  test cases  since the most research had al-  
ready been done on them. Detailed explanation of the 
method, algorithms, and results may be found in an 
ar t ic le  called "Discrete Optimizing" by Reiter and 
Sherman in the September 1965 issue of the Journal 
of Industrial and Applied Mathematics. 

V I  1. ANALOG COMPUTATION 
AND SIMULATION 

The traditional tool for simulation of dynamic 
systems has been the analog computer. The simi- 
larity between the real system and the program on 
the analog computer, and the possibility of identifying 
a block of the real  system a s  a group of computer 
components, gives the simulation technique the ad- 
vantage of a model-like representation. 
for  an easy introduction of modifications and im- 
mediate observation of the effects of these changes. 
There a r e  certain shortcomings in the use of analog 
computers. These a r e  in the lack of random access  
memory, limited arithmetic precision, awkwardness 
in performing complex arithmetic, and others. These 
shortcomings led to a combination of the analog with 
the general purpose digital computers, thus preserv-  
ing the advantages of the analog while overcoming 
most of the shortcomings. This type of system is 
called a hybrid system. 

This allows 

Hybrid computation, however, introduces prob- 
lems  itself. 
detailed investigations have been conducted, i t  was 
felt necessary to secure the support of an academic 
institution for basic studies in the a rea  of e r r o r  
analysis of hybrid computation. 

Even though a t  many different places 

Since this is a difficult and complex field, these 
studies a r e  expected to become a long range effort. 
Some investigations have already been conducted by 
the Georgia Institute of Technology. The time limit 
for  this review allows us to report only on the prob- 
lem area ,  the approach, and the more important 
results. Dr. Finn (of Georgia Tech) has investi- 
gated the e r r o r s  introduced by sampling, by hold 
operation ( ze ro  and first order)  fo r  periodic, pulse 
shaped, and stationary band limited random functions 
of time. 
enough to avoid fold over. When the highest frequency 
present  in the vntinuous signal i s  f maximum, then 
the sampling frequency must be more than 2 f maxi- 
mum to avoid fold over. This is well known and fol- 
lows directly f rom a frequency presentation of the 
sampled signal. 

The sampling rate  must be a t  least  high 
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When w e  concentrate on wide sense stationary 
random processes as time functions, w e  can make 
statistical predictions about the expected e r r o r  and, 
what is more meaningful, the expected e r r o r  square 
since the probability of positive and negative e r r o r s  
is equal. We can determine sampling rates, limiting 
the probability of our e r r o r  to exceed a prese t  limit. 
The theory allows us to determine upper and lower 
bounds for the ratio mean square e r r o r  for  a band 
limited random process as a function of the sampling 
ra te  ( ze ro  hold). These investigations a r e  intended 
to be extended to higher order  hold sampling tech- 
niques where similarly interesting results can be ex- 
pected. 

F o r  sampling periodic functions , upper bounds 
for  the ratio mean square e r r o r  can also be given 
under the  assumption that lhe iuilial phasc is u n -  
formly distributed over all possible values in a ran- 
dom fashion. 

Dr. Finn has concentrated on investigating the 
e r r o r  introduced by replacing the continuous function 
of time X (t) with a sampled representation using 
zero order  and first order  hold. Dr. Hammond, also 
of Georgia Tech, has worked on a system of n first 
order  differential equations. With little loss in gen- 
erality, he starts with a c lass  in which the first 
derivative is represented explicitly a s  a function of 
position and time. The hybrid computer uses its 
analog part for integration and its digital par t  fo r  
function generation. This allows one to derive for 
the e r r o r  a system of linear differential equations. 
Fo r  short  intervals the coefficients in  these equations 
can be considered a s  constant and the forcing func- 
tion can be approximated by a staircase function. 
This not only allows one to use Laplace techniques 
fo r  their analytical solution, but also provides a 
computer program of moderate complexity which can 
be incorporated with the hybrid program. A test pro- 
gram is presently se t  up in  the Simulation Branch of 
the Computation Laboratory to study the usefulness of 
this approach. 

VIII. NUMERICAL INTEGRATION 

Because of the tremendous cost of modern com- 
puting equipment and the considerable amount of time 
used to perform certain types of studies, for example, 
orbi t  calculations, very substantial savings in com- 
puter t ime and dollars can be realized by even modest 
improvements in  numerical integration techniques. 
The Computation Laboratory, in a continual search 

for  better integration methods, has a dynamic pro- 
gram in mathematical and numerical analysis. This 
program is carr ied out by in-house staff members, 
specialists on a consulting basis, and through con- 
t rac ts  with universities and some industrial firms. 

The numerical integration of differential equa- 
ltions demands quite a large amount of computing 
'time. Therefore, a great  deal of attention has been 
'given to devising more efficient methods of integra- 
tion. The laboratory has a research contract with 

~ Vanderbil t University , Nashville , Tenne ssee , for  
'the investigation of improved techniques for numerical 
'integration of differential equations. The principal 
investigator on the contract has been Professor  E. B. 
'Shanks of the University's Mathematics Department. 
Iprofessor Shanks has devoted his  efforts primarily 
' to a study of Hunge-Kutta type processes. A t  the 
time the contract began, there existed the well-known 
Runge-Kutta formulas of fourth order  requiring four 
evaluations of the function; the Kutta-Nystrom formu- 
l a s  of fifth order  requiring s ix  evaluations; and the 
'less well-known Huta formulas of sixth order  requir- 
ling eight evaluations. 
1 

A paramount problem in trying to increase the 
order  of the formulas in the Runge-Kutta sense is 
,that the number of conditions to be satisfied increase 
exponentially (essentially) and by the fact that the 
'degree of the resulting algebraic conditions increases  
'by two a t  each stage; for  example, a seventh-order 
formula with nine evaluations involves 58 algebraic 
'conditions with about half of them of twelfth degree. 
I In such a complex system the notation becomes cum- 
bersome and a problem in itself. However, the prob- 
lem became tractable through use of the tensor calcu- 
lus  notation. 

1 Dr. Shanks has been able to develop formulas of 
,the sixth order  with seven evaluations; seventh o rde r  
with nine evaluations; eighth order  with twelve evalua- 
(tions; and ninth o rde r  with seventeen evaluations, 
i 

By adopting a new view point in which not all of 
the algebraic conditions were exactly satisfied, Dr. 
Shanks has been able to develop formulas of fifth order  
accuracy with five evaluations; sixth order  with s ix  
evaluations; seventh order  with seven evaluations; 
and eighth order  with ten evaluations. Al l  experience 
to date indicates that these formulas a r e  more ef- 
ficient than any of this type known previously. Addi- 
tional details may be found in NASA Technical Note 
'D-2920 and Y3olution of Differential Equations by 
Evaluation of Functions, f 1  Mathematics of Computation, 
January 1966. 
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NEW ONE-STEP INTEGRATION METHODS OF HIGH ACCURACY 

BY 

Erwin Fehlberg" 

9 3  SUMMARY 

New numerical methods for the solution of 
periodic trajectories for the restricted three body 
problem are presented and factors affecting both the 
accuracy of results and the reduction of electronic 
computer time through the use UT the iiew mcthods 
are discussed. Extension of the Runge-Kutta method 
to higher o rde r  of accuracy and the establishment of 
a pure series expansion method with transformation 
of the original differential equations to a second- 
degree algebraic system and application of recur- 
rence formulas has provided a method to more 
effectively use computer capability and point the way 
for  use of the new methods in many space problems. 

1. INTRODUCTION 

The development of the electronic computer has  
created a need, and that need is becoming increasing- 
ly urgent, for more  accurate,  more powerful numeri- 
cal  methods of computation. 
course,  nothing more than a piece of hardware, how- 
ever  complex. It obeys whatever numerical methods 
are programmed into it. 
were developed long ago when the only tools available 
to mathematicians were pencil and paper, and perhaps 
a few tables of pre-calculated values (s ines ,  cosines, 
logarithms, etc. ) . The advent of the simple desk 
calculator helped. But even with the desk calculator, 
computational procedures had to be kept simple. 
Complicated operations, no matter how refined o r  
necessary for the solution of certain complex prob- 
lems ,  were impractical  o r  impossible. 

The computer is, of 

Most numerical methods 

The rapid development of the modern electronic 
computer caught most mathematicians unprepared to 
use other than their  old methods on the new hardware. 
Even now, the numerical methods used at many com- 
puter facilities are still the old desk calculator 
methods. 
Runge and Kutta, still  widely used for the numerical 

For  example, the standard method of 

integration of differential equations, was developed 
around 1900. 
with hand-operated desk calculators. 

The method was quite suitable for use 

But many of the scientific and engineering prob- 
l ems  at Marshall Space Flight Center have become 
so involved that use of the standard, turn-of-the- 
century methods is completely out of the question. 
Not only are these methods often extremely slow, 
consuming excessive amounts of expensive computer 
running time; they are inaccurate, producing un- 
reliable results. Thus there  is a pressing need at 
the Marshall Space Flight Center for new, more ad- 
vanced computational methods designed especially 
for use with the modern electronic computer. 

The Computation Laboratory has been actively 
seeking modern numerical methods suitable, in 
particular,  for the solution of problems in astro- 
nautics and celestial mechanics. In recent years ,  
several  new approaches to the solution of ordinary 
differential equations have been developed in which 
such problems are expressed. One new approach 
is based on a power series expansion combined with 
a sophisticated, high-order Runge-Kutta procedure. 
Unlike the old methods still in widespread use, these 
new methods can conveniently be extended to any 
high-order accuracy desired.  

These powerful, high-order methods drastically 
reduce the e r r o r s  involved in the numerical integra- 
tion of differential equations. Such e r r o r s  originate 
both in the physical limitations of the computer, 
i. e. , round-off e r r o r s ,  and in  the limitations of the 
numerical method programmed into the computer, 
i. e. , truncation e r ro r s .  Moreover, in problems 
like the three-body problem, the new methods pro- 
ceed in large integration steps without impairing ac- 
curacy. 
tional methods, which must proceed in extremely 
small steps to preserve some accuracy. 

Thus they are also much faster than conven- 

The Marshall Space Flight Center is conducting 
extensive theoretical and numerical studies of 
periodic orbits of vehicles in the earth-moon system. 
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Data precisely defining a large number of such 
periodic orbits have been obtained using the new 
methods. Considering the effect of the truncation 
error, and to give some idea of the accuracy and 
speed possible with these methods, a sample periodic 
orbit in the restricted three-body problem was com- 
puted and found to retain its periodicity to within 0. 01 
millimeter (the distance from the earth to the moon 
is 384,000 kilometers). The computation took only 
about 5 percent as long as with the conventional 
Runge-Kutta-Nystrom method. 

These new methods can, of course,  be used to 
solve many other problems in addition to problems 
in celestial mechanics. They a r e  fully reported in 
the literature. 

11. AVAILABLE INTEGRATION METHODS 

A. MULTISTEP METHODS 

Methods for the numerical integration of dif- 
ferential equations are ,  broadly speaking, either 
multistep or one-step. 
veloped as early as the nineteenth century, mainly 
for problems in astronomy. A s  their name indicates, 
these methods use the information from several  back- 
ward computation steps ir calculating the solution for 
the current step. 
methods of Adams, Cowell, Gauss, etc. ) a r e  very 
efficient for problems that can be integrated in steps 
of constant size. 
encountered in astronomy, it is not at all surprising 
that a number of multistep methods have been de- 
veloped by astronomers. 
the very great advantage that they generally require 
only one o r  two evaluations of the differential equa- 
tions per step, and they can be extended to any order  
of accuracy simply by adding higher-order difference 
te rms  to the formulas. 
Kutta method, which is the classical one-step method, 
they are quite fast on an electronic computer; they 
are economical, and they can be made very accurate. 

Multistep methods were de- 

Multistep methods (e. g. , the 

Since many such problems a re  

Multistep methods also have 

Hence, unlike the Runge- 

But multistep methods do have a number of 
major disadvantages. They a r e  not self-starting, 
but require a special starting procedure. 
of known values is needed before computation can 
begin. Thus a number of backward values must be 
created by means, for example, of an iterativc pro- 
cedure. And i f  the integration step size has to be 
changed during the computation, i f ,  for instance, the 
step size must be reduced to preserve accuracy, 
additional time-consuming iterations are needed to 
build a new difference scheme-time-consuming 

A history 
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because the iterated values for the changed step s ize  
must be of high accuracy. 
others,  multistep methods are largely restricted to 
problems that can be integrated entirely in steps of 
the same size. This is, of course,  the case in the 
determination of astronomical orbits,  where the 
distances between the attracting bodies are changing, 
but not radically . 

For these reasons,  among 

This is not at all the case in, say,  the interest- 
ing orbits of the restricted three-body problem. 
Figure 1 shows a typical periodic orbit  of the re- 
stricted three-body problem. The earth and the 
moon are the two attracting masses.  
space vehicle are shown in the rotating coordinate 
system, in which the x-axis always extends from 
the earth to the moon. 
is indicated, except in the vicinity of the ear th ,  
where the steps were too numerous to show. 
viously, the integration steps in the vicinity of both 
the earth and the moon are much smaller  than those 
where the vehicle is far from either attracting body. 

These and the 

Every fifth integration step 

Ob- 

1.4 

FIGURE 1. PERIODIC ORBIT OF THE 
RESTRICTED THREE-BODY PROBLEM 

This kind of flexibility-to be able to increase the 
step size as much as possible or to be able to de- 
crease i t  as much as necessary-is essential for 
efficient integration of such problems as  the re- 
stricted three-body problem. 
tion during the large par t  of the orbit  where the space 
vehicle is near  one or the other of the attracting 
masses .  

It speeds the integra- 

This need for flexibility in the size of the inte- 
gration s tep is caused by two kinds of e r r o r  that 
accumulate during‘ a Computation. Too large a step 
size resul ts  in an  unacceptably large truncation er- 
ror because truncation e r r o r  is proportional to a 
cer ta in  power of the step size. Too small a s tep 
s i ze  not only slows the computation, thus wasting 



ERVIN F E H L B E R G  

second degree. 
the procedure has been outlined in ear l ie r  papers by 
Steffensen [ 41 , Rabe [ 51 , and the author [ 31 . 
procedure is based on the fact that the high-order 
derivatives of a second-degree system of differential 
equations can be conveniently obtained on a computer 
by recurrence formulas. 

For special differential equations 

The 

This can best be illustrated by the transforma- 
tion procedure in a simple example. 
differential equation 

Consider the 

dx -x 
dt 
-- - e  . 
Introduce the auxiliary function 

(2) e-x = u 

and obtain from equations (1) and (2)  a system of 
second-degree algebraic differential eaquations 

Substituting the power series expansions 

x = c  xu. ( t - t O ) V , U = C  u v .  ( t - t J  (4) 
u=o v = o  

into equation ( 3 )  and comparing coefficients for the 
t e rms  with (t - to)" resul ts  in the following recur- 
rence formulas for the coefficients in equation (4) : 

( n = 1 , 2 , 3 , .  . . ) i XMi = un 

n 

Since the first coefficient X, is known from the 
initial value x(t,) for the step and the first coefficient 
Uo can be obtained from equation ( 2 ) ,  all following 
coefficients X u ,  U, ( v  = 1, 2, 3 ,  . . . ) can easily be 
computed from the recurrence formulas of equation 
( 5 ) ,  a very convenient procedure for  electronic 
computers. 

It is quite obvious, too, that the power ser ies  
expansion method allows for an extremely simple 
automatic step-size control. Assuming truncation 
of the expansion in equation (4) for x after the term 
s ( t - t 0 ) " ,  the leading term of the truncation e r r o r  
of x can easily be found by extending the computation 
to  the next coefficient %+I. If the truncation e r r o r  
t u rns  out to be too large or too small ,  the step s ize  

a t  At can be adjusted immediately in such a way that 
1 Xn+i (At) n+i 1 remains within prescribed limits. 
(For safety it might sometimes be advisable to con- 
sider more than just one te rm of the truncation 
e r ro r .  ) Unlike Runge-Kutta or multistep methods, 
no repetition of any computation is necessary i f  the 
step s ize  fails to  meet the requirements for the 
magnitude of the truncation e r ro r .  
Laboratory knows of no other method that offers such 
easy step-size control. 

The Computation 

In this simple example, there is no real need to 
introduce auxiliary functions, since a repeated dif- 
ferentiation of the differential equation (1) can be 
performed without difficulty. A more representative 
example follows to illustrate how convenient the 
method can be. 

IV. POWER SERIES EXPANSION METHOD 
APPLIED TO THE RESTRICTED THREE-BODY 

PROBLEM 
Clearly, the following equations, for the re- 

stricted three-body problem in the rotating coordinate 
system, are not nearly so simple as equation (1): 

x - (1 - p) 
- @ [  (x-i+p)2 + y2] 3/2 

where 1.1 = the relative mass of the moon in the earth- 
moon system. 

There exists a first integral of these equations 
of motion, the so-called Jacobi integral 

I.1 = Const. 
- [ (x-i+I.1)2 + Y I 

Auxiliary functions a r e  again introduced 

(7) 
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expensive machine time, even more seriously, it 
resul ts  in an unacceptably large round-off e r r o r  be- 
cause round-off e r r o r  is a direct function of the 
number of steps that must be taken to compute the 
ent i re  problem. 

For use with computers, the ability to selectively 
vary or to automatically control the integration step 
s ize  is fundamental to the efficient, fast-and-accurate 
integration of problems like the restricted three-body 
problem. This cannot be done with multistep methods 
except a t  considerable expense in increased complex- 
ity and increased computer running time. 

B. ONE-STEP METHODS 

This, briefly, was the state-of-the-art in 
methods fo r  integrating differential equations when 
the Computation Laboratory began research in the 
field. 
and slow, and costly in machine time even for the 
solution of a relatively simple problem like the re- 
stricted three-body problem. For  more complex 
problems in orbital mechanics, like the n-body prob- 
lem,  they could well turn out to be prohibitively slow 
and, worse, intolerably inaccurate. An original, Start-  
ing 16-digit accuracy could easily dwindle to two or 
one or  no accurate digits at the end of a long, com- 
plex computation. Also, it  seemed absurd to pay 
heavily for auxiliary features like step-size control. 

The available methods were rather  inaccurate 

One-step methods lend themselves more readily 
to step-size variation. In fact, the step s ize  can be I I 1. POWER SERIES EXPANS ION METHOD 
changed a t  any time and can immediately be accom- 
modated to local conditions at any point in an inte- 
gration. One-step methods a r e  also self-starting. 
But they, too, have a number of disadvantages. The 
classical Runge-Kutta method is of only fourth-order 
accuracy. Several extensions have been made in the 
las t  decade, notably by Shanks [ 1, 21,  but Shanks' 
method, the  most accurate Runge-Kutta procedure 
developed to date, i s  still of relatively low-order 
accuracy (up to eighth-order) . Runge-Kutta methods 
also tend to be slow because of their great  complexity. 
The differential equation must be evaluated many 
times for each integration step. Shanks' eighth-order 
method, for example, requires 12 evaluations per 
step. If, in addition, the differential equations a re  
complicated, if they contain transcendental functions 
(s ine,  cosine, exponential functions, etc. ) , the 
method becomes excessively slow and the cost in 
computer running time will certainly be high. 

Another weakness of Runge-Kutta methods is that 
they, too, like the multi-step methods, lack an 
economical procedure for automatically adjusting the 
s tep size to the local conditions of the problem. A s  
with all one-step methods, the step s ize  can be 
changed at  any time, but no economical control pro- 
cedure s e e m s  to exist to do i t  automatically. In fact, 
using Runge-Kutta methods, one never knows whether 
the proper step size (for a combination of maximum 
accuracy and speed) is being used. There i s  no easy 
way to determine this. Apart from somewhat doubt- 
fu l  rule-of-thumb control procedures, there exists 
only Richardson's well-known method of the deferred 
approach to the limit. A step is computed, recom- 
puted with half the step size (or double the s tep s i ze ) ,  
nnd then, by an extrapokition procedure, the results 
of the two Computations a re  compared. This, how- 
ever, doubles the computational effort o r ,  more 
exactly, doubles computer running time merely for 
the benefit of step-size control. 

A s  a f i rs t  quick improvement, the range of prob- 
lems normally solved by pure power series expansions 
was expanded [ 31. The use of pure power series ex- 
pansions to solve differential equations i s  not exactly 
new, of course.::: But unless the differential equation 
under consideration was extremely simple, pure 
power series expansion methods had generally been 
discarded a s  leading to cumbersome and lengthy com- 
putations for the derivatives they require. And, in 
fact, the method suggested requires a repeated total 
differentiation of the differential equation ( s )  with re- 
spect to the independent variable to obtain the neces- 
sa ry  coefficients of the power series expansion. 

Only a few years  ago, the repeated total different- 
iation of a differential equation was not considered 
feasible, since, with increasing o rde r ,  the deriva- 
tives become rather  unwieldy expressions. 
fast electronic computers such a procedure is gener- 
ally quite feasible. It is well-known that in the las t  
few years  considerable progress  has been made in 
the automatic differentiation of formulas by computers. 

But with 

Moreover, a s  an even more effective approach, 
apar t  from a straight-forward differentiation of the 
differential equation ( s )  , a great  number of these can 
be differentiated in a ra ther  simple way by f i rs t  trans- 
forming them, through introduction of auxiliary func- 
tions, into algebraic differential equations of the 

::: All commonly used integration procedures a r e ,  in 
fact, based i n  par t  on a power ser ies  cxpansion. 
coefficients of Runge-Kutta formulas or the coeffic- 
ients  of multistep methods a r e  obtained by expanding 
in power series (Taylor series, etc. ) and then find- 
ing systems of equations of condition for these co- 
efficients. 

The 



forms the original system into the following second- 
degree algebraic system, which can be integrated 
directly by power series expansions: 

du d r  dv ds 
dt dt dt dt 

r - + 3 u - = 0 0 ,  s - + 3 v - = O 0 ,  I 
Again, of course, new differential equations for 

the auxiliary functions liavt! 1Jttt3ll ~ d t l e t l ,  but the ncw 
system is completely algebraic, containing only pro- 
ducts of two functions throughout. 

Let the power series expansions be 

u =  u (t-t ) v ,  v =  1 vv (t-to)v v o  v= 0 v = o  

V 
r = C RV (t-to) , s = C Sv (t-to) 

v = o  v = o  

The first coefficients Xo, XI and Yo, Y1, are 
known at the beginning of the integration step. The 
fors t  coefficients Ro, So,  Uo, and Vo a re  then de- 
termined from equation (8) .  

Inserting power series expansions from equation 
( I O )  into the original system of equation ( 9 )  , the 
following recurrence formulas for the succeeding 
coefficients a r e  obtained: 

Thus all the Taylor coefficients of X and Y can be 
obtained. These expressions can be extended to a s  
many te rms  as desired. 
whatsoever on the order  of the formulas. This is in 
distinct contrast to Runge-Kutta formulas, in  which 
each advance of only one order  in accuracy has taken 
many years  to establish and, a s  mentioned ear l ie r ,  
the highest known order  is only the eighth. There is 
no such problem with recurrence formulas. It is such 
recurrence formulas, evaluated automatically on the 
computer and extended to any order  desired, that form 
the basis of both the pure power series expansion 
method and, a s  will be shown in the next section, the 
improved Runge-Kutta method developed by the 
Computation Laboratory. By a suitable transforma- 
tion the original differential equation( s)  is reduced 
to a second-degree algebraic system and then the re- 
currence formulas a r e  applied whose coefficients a r e  
determined automatically on the computer. 

There is no restriction 

The Computation Laboratory has solved many 
problems-restricted three-body, motion of an elec- 
tron in the field of a magnetic dipole, and others-by 
a pure power series expansion method. However, 
while the method proved superior to other existing 
methods, there still seemed to be some room for 
improvement. For example, the number of t e rms  in 
all the sums in equation (11) increases with increas- 
ing n. 
higher-order coefficients. 

Hence computer running time gets longer for  

It is well-known, too, that power ser ies  expan- 
sions have certain limitations with respect to the 
truncation e r ro r .  
there is no way of covering the remainder of the e r r o r ,  
which is roughly equal to the leading term. 
unavoidable in  a power ser ies  expansion, although it 
is even more of a problem in multistep methods. This 
need not be such a problem with Runge-Kutta methods, 
and i t  is for this reason that the Computation Labora- 
tory has developed the Runge-Kutta transformation 
method, which combines the high-order accuracy of 
power ser ies  expansions with a good coverage of the 
truncation e r ro r .  In fact, since, to a certain extent 
at least, the leading term of the truncation e r r o r  can 
be covered, the Runge-Kutta transformation method 
radically reduces the truncation e r ror .  

When one truncates the expansion, 

This is 

Thus a combination of the two methods should 
not only be more accurate than the pure power series 
method, it should also provide an advantage in speed 
because larger  step sizes can be used. 
method is described in the next section. 

The combined 
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V. R UNGE- KUTTA TR AN SFORMAT I ON 
METHOD 

A. FORMULAS OF ANY DESIRED HIGH ORDER 

Consider only second-order differential equations 
since it is these that are most frequently encountered 
in  physics and mechanics. (The method works f o r  
first-order systems a s  well [ 61. ) For brevity, 
formulas for only a single equation will be written, 
although the method holds in  exactly the same way 
for systems. 
variable, then: 

Letting x be the original dependent 

(12)  I *  2 = f ( t ,  x, i )  

X ( t 0 )  = xo, i ( t0 )  = i o  

Next a transformed variable xT is introduced, 
which equals the original variable minus the first 
m+2 t e rms  of the power ser ies  expansion for x 

m+ 2 

u = l  

U 
x = x -  c xu ( t  -to) T 

m+ 2 v - 1  i = i  - c ux (t - t o )  
V v = i  T 

Performing this subtraction results in a function 
with zero  derivatives f o r  t=to up to the m+2nd order. 
The following differential equation is obtained for the 
transformed function XT: 

x (to) = X(t0) = xo, x (to) = 0 T T 

That the f i r s t  m+2 derivatives equal zero con- 
siderably faciliates establishment of Runge-Kutta 
equations of condition. Furthermore, accuracy 
can be of any high order desired simply by subtract- 
ing enough te rms  from the original function. In 
other words, a very simple function is always created 
that has zero derivatives up to the m+2nd order .  
Runge-Kutta formulas of any high order  desired can 
then be obtained for  this transformed function merely 
by choosing m sufficiently large. For example, the 
Runge-Kutta formulas for the transformed differential 
equation (15) just given would read 

and 

m+ 5 
x T = X O +  (Cik,+ Czkz+ C3k3) h +  O(h ) 

x = 0 + C;ki + Cakz + C;k3 + O(h m+5 ) 
T 

2 T = xo + (e lk i  + &kz + b3k3 + h4k4)h + 0(hd6) 

Three substitutions yield an accuracy in x, 2 to the 
hm+4th t e rm,  where m is the number of differentia- 
tions performed in equation (13)  before x can be re- 
placed by xT. 
(16) yields the truncation e r r o r  te rm required for 
automatic step-size control. 

The fourth substitution in  equation 

Thus an additional advantage of this approach, 
which also distinguishes it from any other Runge- 
Kutta formulas, is the very simple, economical (in 
computer running time) procedure for control of the 
truncation e r r o r ,  Only the first three evaluations 
are needed for the actual computation; the fourth 
evaluation gives an improved value for Et which is 
accurate  to one further power of h. 
these t e rms ,  the leading te rm of the truncation e r r o r  
is represented with sufficient accuracy 

By subtracting 

Tx= x T T  - x^ = [ (C, - k i ) k I  + (C, - 62)kz 

+ (C3 - b3) k3 - b4k4] h . (18)  

Full details on these new high-order Runge- 
Kutta formulas a r e  given in reference 6. 

B. FORMULAS WITH A N  ARBITRARILY SMALL 
TRUNCATION ERROR 

It may be noted, without going' into detail,  that 
in more recent work the Computation Laboratory has 
established Rungc -Kutta formulas in which a param- 
eter u and the absolute value of all members of the 

14 
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leading term of the truncation e r r o r ,  for xT a s  weii 
as for iT, can be made as  small  as  desired, but not 
zero since some coefficients would then become 
infinite. 
with an arbitrarily small  truncation e r r o r  are given 
in reference 7. 

Full details on these high-order formulas 

These new formulas required again a suitable 
transformation of the original differential equations. 
This transformation is based on a power series 
expansion. Any desired degree of accuracy can be 
obtained by doing only three o r  four evaluations of 
the differential equations. This is not possible with 
other Runge-Kutta type formulas now found in the 
literature. There is a small  penalty to be paid in 
computer time since the recurrence formulas must be 
evaluated. The additional computation is not great 
and, because the method is of high order ,  the inte- 
gration can proceed in larger  steps without impairing 
accuracy. The computer running time is much faster 
than for other known integration methods. 
shown in Section VII. 

This is 

VI. SOME OTHER MODERN RUNGE-KUTTA 
FORMULAS 

Briefly, for  comparison, consider two other 
modern Runge-Kutta methods: the Shanks explicit 
method and the Butcher implicit method. To simplify 
comparison, both methods a r e  presented in  eighth- 
order  form. A s  mentioned earlier, Shanks' formulas 
are available only to the eighth order .  
implicit formulas are available to any order .  

Butcher's 

First, consider Shanks' explicit formulas [ 1,2]  
for  i = f (x) \ 

k4 = f (X + ~ ~ 4 l k i  + ~42k2 + a43k3) h 

12 
x =  x , +  C k + O(h9) v v  

v= 1 

Each integration step here  requires i2 substitutions, 
k, through k,,, which a r e  multiplied by certain weight 
factors and summed to obtain the new value for x. 
But because these formulas include no procedure for 
controlling the truncation e r r o r ,  each integration 
s tep really requires 23 substitutions if Richardson's 
extrapolation procedure is used for step-size control, 
i. e. , 2.12 substitutions with one substitution omitted 
since the first substitution occurs twice in the com- 
putation. 

In 1964, Butcher [ 8, 91 published two noteworthy 
papers on implicit Runge-Kutta methods. Following 
are his eighth-order formulas for k = f (x)  : 

5 

' v = l  
x = x o +  C'k + O(h9) v v  

Unlike explicit formulas, where the increments 
for x: k,, k2, k3, e tc . ,  are successively computed, 
jach value depending only a previous values, implicit 
formulas require an  iterative computation. Any 
increment depends not only on the preceding incre- 
ments k,, kz, . . . kv- i  but also on k,, itself and on the 
succeeding increments k,,+i, kv+2, . . . . 
this iterative computation is more involved than the 
straightforward procedure for explicit Runge-Kutta 
formulas. 
siderably fewer substitutions than explicit formulas. 
Formulas (20) require only five substitutions, only 
three of which a r e  iterative, per  step versus  12 for 
the comparable Shanks' formulas. 
iteration tends to be slow. This is demonstrated in 
Table I. 

Naturally, 

But implicit formulas do require con- 

However, the 
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Number 
of Steps 

216 

493 

389 

290 

TABLE I 

COMPARISON OF TWELFTH-ORDER METHODS, 
-~ 
RESTRICTED THREE-BODY PROBLEM. ( 

Computer Running 
Time (min) 

0. 88 

0.21 

0. 15 

0. 13 

Method 

R K B ( ~ )  

RKT d4) 
RKT d5) 

PSE(3) 

Final x 

1.20000 00000 00013 

1.19999 99999 99981 

1.20000 00000 00001 

1.20000 00000 00013 

Final 9 

-1.04935 75098 30328 

-1.04935 75098 30303 

-1.04935 75098 30321 

-1.04935 75098 30332 

( 1) Corresponding results for  Shanks' eighth-order formulas are: 1.20000 00000 00002; - 1.04935 75098 30310; 
814 steps; and 0.46 minute. Note that eighth-order formulas are, of course,  not competitive in speed or 
accuracy with twelfth-order formulas. This is far more  obvious in  more complex differential equations, 
gs can already be seen in the more complex, but still relatively simple, case  of the rest r ic ted four-body 
problem. 

(2) RKB = Runge-Kutta-Butcher method [ 8, 91 
(3) PSE = Power series expansion method [ 31 
(4) RKT 1 = Runge-Kutta-transformation method [ 61 
(5) RKT 2 = Runge-Kutta-transformation method [ 71 

V I  1. CONCLUSIONS 

A s  an example of the computing speeds possible 
with the modern methods described, the periodic 
orbit shown in Figure 1 was computed. 
has the following initial values: 

The orbit 

X O  = 1.2,  yo = 0, 20 = 0, 90 = -1.04935 75098 30320 
( p  = 1/82.45) . 

To preserve sufficient accuracy for a t rue compari- 
son of the methods, the initial value yo was computed 
in 20-digit arithmetic. The gomputations were exe- 
cuted on an  IBM 7094, Model 11 computer. (16 digi ts) .  
Table I shows the results for  one complete orbit. 

For all methods compared in Table I ,  we lose 
about two digits on a 16-digit computer. 
method, which uses the fewest integration s teps ,  is 
'extremely accurate but it is also extremely slow. 
In a l l  cases ,  however, the deviations are negligible, 
being of the o rde r  of 0. 01 millimeter for  this particu- 
lar orbit. 

The Butcher 

But the method is nearly seven t imes as 

fast as the Butcher method, i. e. , it would cost  about 
seven time as much in computer rentals  to use the 
Butcher method. 
problem like this example, it pays to use the most 
efficient integration method available. 

Thus, even in a relatively simple 

A group, headed by Mr. Mert C. Davidson, is 
being set up in  the Computation Laboratory to explore, 
in  detail, applications of these methods to practical 
problems that will exploit their full possibilities. For  
example, a program has already been written to solve 
the complete n-body problem (including oblateness 
t e r m s )  , as a whole, with no reliance on data from 
relatively inaccurate external sources like ephemeris 
tables, etc. 
rapid and highly successful. 
while applications still need to be developed and ex- 
ploited. 

The computation of this problem has been 
But many new worth- 

Finally, i t  should be noted that the subject matter 
of this paper is given much more thorough coverage 
in  the paper New One-Step Integration Methods of 
High-Order Accuracy Applied to Some Problems in  
Celestial Mechanics, which will be published shortly 
by NASA. 
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RECENT DEVELOPMENTS IN ANALYTICAL CELESTIAL MECHANICS 

Richard F. Arenstorf% 

SUMMARY 2 73q 
For the restricted problem of three bodies the 

p r iva t ion  of periodic solutions different from the 
classically known ones is discussed and the ideas 
used for their existence proofs are briefly outlined 
and related to classical  methods. In particular,  the 
derivation of closed perturbed precessing elliptic 
orbi ts  of arbi t rary eccentricity and small  major axis 
about the smaller  one of the two attracting bodies 
with arbi t rary mass  ratio is indicated. Two numer- 
ical  examples of recently discovered closed trajec- 
tor ies  are included. 

1. INTRODUCTION 

Among the problems of celestial mechanics, 
which are important for  space flight applications, the 
rest r ic ted three body problem plays a central  role. 
This problem is concerned with the description of 
the possible trajectories of a particle (manned o r  un- 
manned satellite, meteorite, planetoid) of negligible 
mass  under the gravitational attraction from two 
heavy celestial  bodies, which are assumed revolving 
according to Kepler's laws on circles about each 
other. Limiting our attention to the two-dimensional 
case the equations of motion of the particle can be 
written in the form 

Hill, Poincar6, Birkhoff and others,  and is still 
being pursued vigorously. I t  will be our sole con- 
ce rn  in this presentation. The study of periodic 
solutions of equation (1) is of interest  for several  
reasons. F i r s t ,  since the restricted three body 
problem presents a non-integrable dynamical system, 
every contribution toward an understanding and a 
description of its general solution afforded by par- 
ticular solutions is highly welcome. 
advances by Kolmogorov, Moser and Arnold in the 
areas of stability and almost periodic motions have 
led to an understanding of the behavior of dynamical 
systems in the vicinity of its periodic motions. And 
third, some periodic solutions of equation (1) are of 
great  practical interest  in dynamical astronomy o r  
in space flight mechanics. 

Second, recent 

Our present knowledge of periodic solutions of 
equation (1) is still modest. Without discussing the 
classically known solutions, which are either near  
the libration points, o r  are close to circular  solutions 
( for  small  p > 0 ,  o r ,  for arbi t rary p, when near  one 
of the masses  o r  far away from both masses ) ,  o r  
which are inside a closed zero-velocity oval about 
the heavier mass  closing only after many revolutions, 
etc. , we will give a description of some recently 
discovered periodic solutions and of the ideas used 
for  their existence proofs. 
characterized by their  relationship to Keplerian 
elliptic motions of positive and possibly large eccen- 
tr icit ies,  presenting relative to equation (1) , a 
situation which classical researchers  attempted in 
vain to illuminate although they had essentially 
created the methods with which to attack such pro- 
blems. 

These new solutions are 

( '  = d/dt , i2 = -1) (1) 

II. PROBLEM 
where x = xi + ix2 is the complex position vector of 
the particle,  re fe r red  to a rectangular coordinate 
sys tem,  which rotates  with unit angular velocity 
about the center  of mass  of the two heavy bodies with 
masses  p and u = as origin. formed to rest) 

Let  us  describe our problem. Equation (1) 
approximates the equation of motion for  the Kepler 
problem (two body problem with one mass  trans- 

.. The at tempt ,  among others ,  to exhibit periodic 
solutions of equation ( 1) has received great empha- 
sis and led to some success through the work of 

z = -mz I Z , m > 0 

in an inertial coordinate system after a rotation 
z = eitx ; for example, i f  p > o is very small ,  m = v 
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and the particle does not approach the smaller  body 
too close (planetary case)  , o r  when the particle 
moves in the vicinity of the smaller  one of the attrac- 
ting bodies (satellite case)  , etc. Now equation ( 2)  
has elliptic solutions, say with major half axis a > 0 
and eccentricity E ,  0 < E < 1. Such a solution is 
closed in the rotatin xi, x2 coordinate system, if  

period 2n of eit, i. e. , if a = ( 
m ,  k # 0. Under this assumption the resulting ro- 
tating elliptic orbit to be described by x = xQ ( t )  i s  
closed after k - m revolutions about the origin, having 
the period T';' = 2m. The problem is to find periodic 
solutions x = x( t)  of equation ( 1) which a re  near 

its period To = %a3 B is a rational multiple of the 
with integers 

x';c(t). 

This problem can, in the simpler planetary case,  
be solved with the classical methods devised by 
Poincar;. The only additional idea needed consists 
of the application of an appropriate periodicity con- 
dition instead of the classical condition of return of 
the motion to its initial state after time T > 0. This 
classical condition leads to a singular case ,  even 
after reduction with the help of the Jacobian integral 
of equation ( 1) , when applied to the generation of 
periodic solutions of equation (1) from the above 
x':' ( t ) .  
condition 

The difficulty can be overcome by using the 

x( t )  = rea l ,  X ( t )  = pure imaginary at  t = o 
and t = i T  > 0 ( 3 )  

for a solution x = x(  t) of equation (1). Equation ( 3 )  
implies that the curve x = x( t)  ( 0  5 t 5 T)  becomes 
symmetric about the real axis of the x-plane and 
closed. 
To satisfy equation ( 3 ) ,  the solutions x of equation 
(1) represent analytic functions not only of t ,  but 
also of the parameter p in equation ( 1) and of the 
initial position and velocity coordinates 

Thus, x( t)  becomes periodic with period T. 

Then equation ( 3 )  can be rewritten a s  

giving two scalar  real  equations for the unknowns 
T ,  51, Q. When p = 0, these equations have a known 
solution ( say  T" , 51" , q2*) belonging to the genera- 
ting solution x'~ ( t )  of equation ( 1) with p = o after 
proper choice of its initial values. Since the re- 
spective Jacobian determinant with respect to T and 
Q does not vanish ( to  establish this fact constitutes 
the decisive par t  of the existence proof) ,  the im- 
plicit function theorem leads to the existence of 
solutions for T ,  tl, V2 of equation ( 5 )  near T':, <?, 
Q':' for sufficiently s m a l l  p > 0 and thus to periodic 
solutions of equation (1) near x':' ( t )  [ i 1 .  

By proper choice of m ,  k ,  and E above the pre- 
cessing elliptic orbit 2:' (t), ( 0  s t 9 T; ) can be made 
to pass the attractive bodies a t  prescribed s m a l l  
distances and this property will still  hold for  the 
resulting periodic trajectories x( t )  , ( 0  5 t 5 T) of 
equation (1) with p > 0,  since p i s  small. 
trajectories a r e  of great  astronautical interest  for 
space flight i n  the Earth-Moon system. 

Such 

I 1 1 .  SATELLITE CASE 

W e  now come to the more difficult satellite case 
of our problem. 
that periodic solutions x( t)  of equation ( 1) near 
x'* ( t )  exist (since I ,  > 0 i s  small ,  for instance) and 
the periodic motion is to take place in the near 
vicinity of the body of m a s s  v( called planet) , where 
the disturbance exerted by the othcr more massive 
body, being nearly a t  r e s t  in the inertial coordinate 
system, causes large deviations from Keplerian 
motion for the third body near the revolving planet. 
If x'k ( t )  i s  simplified to a circular solution by putting 
t = 0 and dispensing with the condition that T d 2 n  be 
rational, our problem has been solved already in 
different ways by H i l l ,  Brown, Moulton, Wintner and 
Siegel. But these resul ts ,  which a r e  based on power 
se r i e s  expansions of the coordinates xi, x2 in powers 
of the small  period, give no indication of the exis- 
tence of periodic 
small  a = (m/k)273. The f i r s t  result in the direction 
of the present problem, although only in the planetary 
c a s e ,  was obtained by Birkhoff using the Poincar; - 
Birkhoff fixed point theorern for annulus mappings, 
and more recently by Moser,  who used the Birkhoff - 
Siegel fixed point theorem for local area-preserving 
mappings to get a more accurate dcscription of the 
location of the obtained solutions of equation ( 1). A 
s imi la r  resul t  in the satellitc case ,  giving for each 
sufficiently small  value of the Jacobian intcgral the 

This time we need new ideas to show 

olutions near x':'( t)  with F > 0 and 
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existence of countably many periodic solutions which 
close only after many revolutions about the planet, 
was recently established by Conley using the Poincare- 
Birkhoff fixed point theorem and a new construction of 
the classically known nearly ci rcular  solutions men- 
tioned above. These periodic solutions of equation ( 1) 
sti l l  lack a more accurate geometrical description. 
Adequate references to the l i terature are contained 
in references 1 and 2. 

We shall now give a brief description of the ideas 
and techniques which lead to the existence of countably 
many families of 1-parametric solutions x(t)  near  
x'> ( t )  in the satellite case of equation ( 1) , belonging 
to sufficiently small  values of m/k = a3/' and having 
the family parameter  E which ranges over suitable 
closed intervals contained on 0 < E < 1. These solu- 
tions exist  for all 0 < v < 1. 

We transform equation ( 1) by a translation w = 

x + p into 

= - p ( i + ( w  - 1)Iw - 11-3) = P (w).  ( 6 )  
0 

Here the right hand term Po(w) is the disturbing 
function, which vanishes at w = 0, i. e. , at the location 
of the small  planet of mass  v. A t  w = 0, the left side 
is singular, however. Replacing PO( w) by 0 in equa- 
tion ( 6 )  leads,  after the rotation z = eitw, to equation 
( 2 )  with m = v. 
integrable Kepler problem for  small Iw( even though 
1.1 = 1 - v is not small. Again, use of the periodicity 
conditions of equation ( 3) , with x replaced by w, is 
decisive and a s su res  a non-vanishing Jacobian rela- 
tive to the unperturbed elliptic motion x>> ( t ) .  
writing equation (3)  in the form of equation (5)  , 
however, is of no use since now 1.1 is not considered 
as a small  available parameter ,  but is fixed and 
nearly 1. 
with equation ( 4 )  for T and Q , as in the case of 
equation ( 5) , with the help of an implicit function 
theorem by application of the following idea. 

Thus equation ( 6 )  is close to the 

Re- 

Despite this we shall solve equation (3) 

We replace in the right side of equation ( 6 )  the 
given function Po(w) by an arbi t rary function P ( w )  
from a suitable set F of functions, which contains 
Po(w) especially. The resulting solutions w( t)  ( o r  
x( t) = w( t) - 1.1 jus t  as well)  then depend upon their 
initial values and upon P( w) . Therefore equation ( 3) 
can  be rewrit ten in the form of equation (5)  , but with 
p replaced by P if P is the name of the chosen function 
P ( w )  from F. Now P can be considered as a gener- 
alized parameter  varying over F, instead of the real 

parameter p. When P = 0 (the zero element in F) , 
equation (5)  again has  a known solution ( say  T" , [?,  

Thus, using an  appropri- 
ate implicit function theorem we arr ive a t  the exis- 
tence of solutions T ,  t i ,  of equation ( 5 )  near T': , 
pi, $ 2  for sufficiently small  P of F (say for 11 P j (  5 

P:) after having introduced a suitable norm 1 1 . .  / I  on 
F. 
(6)  satisfies I/ Po /I 5 r';' to obtain periodic solutions 
of equation ( 6 ) .  Since Po is not available to choice, 
a lower estimate is needed for r" and not merely the 
existence of an r': > 0 with the above property. 

determined by x: ( t ) .  

But theni t is  decisive that the given Po in equation 

The derivation of this estimate requires not only 
a precise application of an implicit function theorem, 
but also sufficiently accurate knowledge of the general  
solution of equation ( 6 )  for initial values near [.'- 
T I " ; ,  ( j  ~ 1 , 2 )  and a time range a t  l e a s t  a s  large as 
the anticipated period T near T"' , so that sharp 
estimates of the perturbation of w (  t )  from Keplerian 
motion w: ( t )  can be obtained. For  this purpose the 
solutions of equation (6) have to be constructed by a 
suitable method of perturbation theory. Because of 
the singularity of equation ( 6 )  a t  w = 0 the motion of 
the satellite is considered in an annulus about the 
planet which contains the precessing Keplerian 
elliptic orbit  w:: ( t )  . The value of I /  Po 1 1  depends 
on the size of this annulus and thus on m , k ,  c ,  and 
p. 

/ /  Po / /  becomes small along dC( t) only, when a = 

(m/k)  '/ becomes small ,  leading to an increase of 
the required range (from 0 to a t  least 27rk) of the 
independent variable, for  which the eccentric o r  the 
true anomaly can be taken. But thereby the above 
r'> decreases with decreasing m/k, almost defeating 
our goal I/ Po / I  5 r';' . This difficulty does not appear 
in the classical case of c i rcular  w';' ( t )  , o r  E = 0,  
mentioned earlier. 

'3 ' 

The main difficulty arises from the fact that 

IV. CONCLUSION 

Summarizing, we can say that generalization of 
Poincarg's small parameter method to the non- 
parametric case by considering the disturbing func- 
tion itself as a generalized small parameter belonging 
to a normed function space leads to applicability of 
classical methods again, and, together with suitable 
periodicity conditions, for example equation ( 3) , and 
with sufficiently accurate convergent methods of 
perturbation theory, to an existence proof for periodic 
solutions x( t)  of equation ( 1) near x':' ( t )  in the 
elliptic satellite case with arbi t rary p in 0 < p < 1 
[21. 



Finally, by numerical extension of the latter 
families of periodic orbits to greater  distances from 
the small planet, interesting new trajectories of the 
restricted three body problem have been found which 
do not belong to the satellite case o r  to the planetary 
case. Some of these pass  repeatedly near  both 
attractive bodies (31; others have been found by my 
collaborator, M. C. Davidson [ 41. Among the 
latter ones are trajectories which demonstrate the 

phenomenon of temporary capture with satellite 
motion about each one of the attractive bodies and 
periodically alternating transitions from the vicinity 
of one body to the vicinity of the other. Two examples 
(Figs .  1 and 2) will be included here. They are 
drawn in the rotating xi, x2 coordinate system under 
the assumption that the attractive bodies represent  
ear th  E and moon M with p = 0.0123 M 1/82. They 
constitute numerical solutions of equation ( 1). 

FIGURE 1 
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